THE ORBITAL STABILITY OF THE TRAJECTORIES OF DYNAMIC SYSTEMS*

G.A. LEONOV

An orbital stability criterion, generating Poincare's criterion /1/ and the results of Hartman and olech $/ 2 /$, is derived. The application of this criteron is illustrated in the case of a two-dimensional dynamic system with an angular coordinate. The problem of the global asymptotic stability of the Lorenz system is considered.
Consider the system

$$
\begin{equation*}
d x / d t=f(x), x \in R^{n} \tag{1}
\end{equation*}
$$

where $f(x)$ is a twice continuously differentiable vector-valued function.
We shall say that a component x_{j} of the vector x is an angular coordinate if $f\left(x_{1}, \ldots, x_{j}\right.$, $\left.\ldots, x_{n}\right) \equiv f\left(x_{1}, \ldots, x_{j}+2 л, \ldots, x_{n}\right)$.

Let $x(t)$ be some trajectory of system (1), contained at $t=0$ in a region $G \subset R^{n}$ which is bounded with respect to the non-angular coordinates. Henceforth we shall also assume that $f(x) \neq 0$ in the closure \bar{G} of G.

We now introduce a symmetric non-singular matrix $\quad H(x)=\left\|h_{1}, \ldots, h_{n}\right\|$, where $h_{i}(x)$ are twice continuously differentiable vector-valued functions, and a twice continuously differentiable vector-valued function $\quad q(x)$ satisfying the inequality $\quad f(x)^{*} q(x) \neq 0, \forall x \in \vec{G}$.

Let H_{0} be a symmetric $(n \times n)$ matrix, $\lambda(x)$ a differentiable function, and t_{j} and ρ_{j} real sequences satisfying the conditions $\rho_{j} \leqslant x_{1}<0, t_{j+1}>t_{j}, t_{j+1}-t_{j} \leqslant x_{2}$, where x_{1} and x_{2} are numbers.

We will also put

$$
\left(\frac{\partial H}{\partial x}, f\right)=\left\|\frac{\partial h_{1}}{\partial x} f, \ldots, \frac{\partial h_{n}}{\partial x} f\right\|, \quad f=f(x)
$$

where $\partial h^{\prime} \partial x$ is the Jacobian of the vector-valued function $h(x)$ at x.
Theorem 1. Assume that

$$
\begin{gather*}
\frac{1}{2} z^{*}\left(\frac{\partial H}{\partial x}, f\right) z-z^{*} H \frac{\partial f}{\partial x} z-\frac{z^{*} H f}{f^{*} q}\left[f^{*} \frac{\partial q^{*}}{\partial x}+q^{*} \frac{\partial f}{\partial x}\right] z \leqslant \tag{2}\\
\lambda z^{*} H z, \quad \forall z \models\left\{z \mid z^{*} q(x(t))=0\right\} \\
H=H(x(t)), \quad f=f(x(t)), \quad q=q(x(t)), \quad \Lambda=\Lambda(x(t))
\end{gather*}
$$

Then, if the quadratic form $z^{*} H(x(t)) z$ is positive definite on the set $\left\{z \mid z^{*} q(x(t))=0\right\}$ and moreover

$$
\begin{equation*}
\Lambda_{j}=\int_{i_{j}}^{t_{j+1}} \lambda(x(t)) d t \leqslant \rho_{j} \tag{3}
\end{equation*}
$$

then the trajectory $x(t)$ is orbitally asymptotically stable.
If the quadratic form $z^{*} H\left(x\left(t_{j}\right)\right) z$ is non-degenerate on the set $\left\{z \mid z^{*} q\left(x\left(t_{j}\right)\right)=0\right\}$, can take negative values and moreover

$$
\begin{gathered}
\Lambda_{j} \geqslant-p_{j} \\
z^{*} H(x(t)) z \geqslant z^{*} H_{0} z, \quad V_{z} \in\left\{z \mid z^{*} q(x(t))=0\right\}
\end{gathered}
$$

then the trajectory $x(t)$ is orbitally unstable.
Proof. Consider the set

$$
\Omega(\delta)=\bigcup_{t \geqslant 0}\left\{y \mid(y-x)^{*} H(x)(y-x)=\delta, \quad(y-x)^{*} q(x)=0\right\}, \quad x=x(t)
$$

Here δ is some sufficiently small number.
Fixing a point $y_{0} \in \Omega(\delta)$, we investigate the surface $\Omega(\delta)$ in a fairly small neighbourhood of y_{0}. Since $y_{0} \equiv \Omega(\delta)$, a number $t=0$ exists such that

$$
z^{*} H(x) z=\delta, z^{*} q(x)=0, z=y_{0}-x, x=x(t)
$$

Let τ be a number near t. Then

$$
x(\tau) \approx x(t)+f(r(t))(\tau-t)
$$

We will now define a mapping (throughout, unless otherwise stated, $f=f(x), K=K(x)$. $q=q(x), x=x(t))$

$$
v\left(y_{0}\right) \cdots y_{0}+\alpha[f+K z]
$$

which carries the point y_{0} into the hyperplane

$$
\Phi=\left\{v \left\lvert\, w^{*}\left[q+(\tau-t) \frac{\partial_{q}}{\partial x} f\right]=0\right.\right\}, \quad w=v-(x-f(\tau-t))
$$

in such a way that

$$
\begin{equation*}
w_{0}^{*} H(x+(\tau-t) f) w_{0} \approx \delta, w_{0}=v\left(y_{0}\right)-(x+(\tau-t) f) \tag{5}
\end{equation*}
$$

The number α will be chosen so that $v\left(y_{0}\right) \sqsupseteq \Phi$, while the matrix K is chosen so as to satisfy (5). Clearly,

$$
\alpha \approx \frac{i^{*} q-\sigma^{*} \frac{\partial q}{\partial r} f}{f^{*} q+q^{*} K z}(\tau-t)
$$

We are assuming here that $z(\tau-t)^{-1}$ is large. Hence it follows that a sufficient condition for (5) to be valid is that

$$
\begin{gather*}
\frac{1}{2} z^{*}\left(\frac{\partial H}{\partial x}, f\right) z+z^{*} H\left[K-\frac{j q^{*}}{f^{*} q} K-\frac{f f^{*}}{j^{*} q} \frac{\partial q^{*}}{\partial x}\right] z=0 \tag{6}\\
V z \in\left\{z \mid z^{*} q(x(t))=0\right\}
\end{gather*}
$$

It follows from (5) that a vector $l\left(y_{0}\right)$ normal to $\Omega(\delta)$ at the point y_{0} can be determined as follows:

$$
\begin{aligned}
l\left(y_{0}\right)=-l_{1}-\frac{l_{1}^{*} l_{2}}{q^{*} l_{2}} q, l_{1} & =l_{1}\left(y_{0}\right) \cdots 2(I-Q) H z, \quad Q=q q^{*}|q|^{2}, \\
l_{2} & =l_{2}\left(y_{0}\right)-f+K z
\end{aligned}
$$

Note that

$$
1_{2}^{\prime} l\left(y_{0}\right)=\left(I-L_{2}\right)(I-Q) H z=\left(I-L_{2}\right) H z, L_{2}=q l_{2}^{*} / q^{*} l_{2}
$$

Therefore,

$$
\frac{1}{2} l\left(y_{0}\right)^{*} f\left(y_{0}\right) \approx\left[f \div \frac{\partial f}{\partial x} z\right]^{*}\left(I-L_{2}\right) H z \approx z^{*} H\left(I-\frac{f q^{*}}{f^{*} q}\right)\left(\frac{\partial f}{\partial x}-K\right) z
$$

Hence, using (6), we see that

$$
\begin{gather*}
\frac{1}{2} l\left(y_{0}\right)^{*} f\left(y_{0}\right) \approx z^{*}\left\{\frac{1}{2}\left(\frac{\partial H}{\partial x}, f\right)+H \frac{\partial f}{\partial x}-\right. \tag{7}\\
\left.H f \frac{1}{f^{*} q}\left(f^{*} \frac{\partial q^{*}}{\partial_{x}}+q^{*} \frac{\partial f}{\partial x}\right)\right\}^{z}
\end{gather*}
$$

We can now show that the trajectory $y(t)$ of system (1) passing at time through y_{0} will satisfy the following inclusion relation to within $(\tau-t)^{2}$:

$$
\begin{equation*}
y(\tau) \in \Omega\left(\delta+(\tau-t) l\left(y_{0}\right)^{*} f\left(y_{0}\right)\right) \tag{8}
\end{equation*}
$$

To that end, we observe that for small $(\tau-t) y(\tau) \approx y(t)+f(y(t))(\tau-t)$. Hence the vector $y(\tau)$ lies, to within $(\tau-t)^{2}$, in the hyperplane L parallel to the hyperplane tangent to $\Omega(\delta)$ and passing through the point

$$
y_{0}+l\left(y_{0}\right) l\left(y_{0}\right)^{*} f\left(y_{0}\right)\left|l\left(y_{0}\right)\right|^{-2}(\tau-t)
$$

It is also clear that L passes through the point $y_{0}+u$ lying on the hyperplane

$$
\left\{x\left\{q(x(t))^{*}(x-x(t))=0\right\}\right.
$$

where

$$
u=l_{1}\left(y_{0}\right) l\left(y_{0}\right)^{*} f\left(y_{0}\right)\left|l_{1}\left(y_{0}\right)\right|^{-2}(\tau-t)
$$

Hence, using the relation $2\left(y_{0}-x(t)\right)^{*} H(x(t)) u=(\tau-t) l\left(y_{0}\right)^{*} /\left(y_{0}\right)$ and the fact that the vectors normal to L and to $\Omega\left(0+(\tau-t) l\left(y_{0}\right) *\left(y_{0}\right)\right.$ at the point $y_{0} \| u$ are identical to within $(\tau-t)$, we obtain (8).

The inclusion relation (8), Eq. (7) and condition (2) of the theorem imply that for all $\tau \geqslant t$ one has $y(\tau) \rightleftharpoons \Omega(\varphi(\tau))$, where $\varphi(\tau)$ is some continuous function such that

$$
\varphi(\tau) \leqslant \delta \exp \int_{i}^{\tau} \lambda(x(t)) d t
$$

Using this inequality and conditions (3) and (4) of the theorem, and applying the standard Lyapunov technique /1, 2/, we obtain the assertion of the theorem.

Note that in the stable case, putting $q(x)=H(x) f(x), \lambda(x) \equiv \mathrm{const}$, Theorem 1 implies an assertion similar to Theorem 14.2 in /2/.

Now let us assume that the matrix in Theorem 1 has the form $H(x)=|f(x)| 2 I, \lambda(x)=\lambda_{1}(x)+$ $\lambda_{2}(x)$, where λ_{1} and λ_{2} are eigenvalues of the matrix $(\partial f / \partial x+\partial f * / \partial x) / 2$ which satisfy the conditions $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$. We then obtain the following assertion from Theorem 1 and well-known results /2/:

Theorem 2. If a number $\varepsilon>0$ exists such that for some solution $x(t) \equiv G$

$$
\begin{equation*}
\int_{t_{j}}^{t_{i+1}}\left[\lambda_{1}(x(t))-\lambda_{2}(x(t))\right] d t \leqslant-\varepsilon, \quad \mathrm{Vj} \tag{9}
\end{equation*}
$$

then $x(t)$ is orbitally asymptotically stable.
Theorem 2 may be viewed as a generalization, to some extent, of Poincare's criterion /1/ and the Hartman-olech theorem /2/.

Let us assume now that the set \bar{G} is positively invariant and that \bar{G} contains a unique asymptotically stable equilibrium state of system (1). In that case, using Theorem 2 and arguments from $/ 2 /$, we obtain the following

Theorem 3. If for any solution $x(t) \Leftarrow G$ inequality (9) is satisfied; then G is the domain of attraction of the stable equilibrium state.

It is also_clear from Theorem 2 that if there is no equilibrium state in a positively invariant set \bar{G}, but inequality (9) is still true, then trajectories of system (1) situated in \bar{G} will approach one another as $t \rightarrow+\infty$.

We will now consider some examples illustrating the application of Theorems 1-3.
Example 1. Consider the equation

$$
\begin{equation*}
e^{\cdot}+\alpha \theta^{\prime}+\varphi(\theta)=0 \tag{10}
\end{equation*}
$$

where α is a positive number, and $\varphi^{(}(\theta)$ is a twice differentiable 2π-periodic function with two zeros θ_{1} and θ_{2} in the set $[0,2 \pi$). Eq. (10) describes the motion of a pendulum in a viscous medium /3/, the dynamics of a synchronous motor in its simplest idealization /4/, the operation of certain phase synchronization systems $/ 5 /$, and the dynamics of Josephson junctions /6/.

Let $\varphi^{\prime}\left(\theta_{j}\right) \neq 0$ and

$$
\int_{0}^{2 \pi} \varphi(\theta) d \theta<0
$$

Then it is well-known /3/ that a number $\alpha_{c r}>0$ exists such that for $\alpha<\alpha_{c r}$ one can find in the phase space of the system

$$
\begin{equation*}
\theta^{*}==\eta, \eta^{*}=-\alpha \eta-\varphi(\theta) \tag{11}
\end{equation*}
$$

a positively invariant set G_{1}, bounded with respect to the coordinate η, which is filled with circular motions $/ 3,7 /$. Noreover, G_{1} will also contain a limit cycle of the second kind. Since $\lambda_{1}(x)+\lambda_{2}(x)=-\alpha<0$ for system (11), it follows from Theorem 2 that a limit cycle of the second kind will be orbitally stable and G_{1} is its domain of attraction.

On the other hand, if $\alpha<\alpha_{c r}$ the phase space of system (11) will contain a bounded positively invariant set \bar{G}_{2} which contains a unique asymptotically stable equilibrium state /3/. It follows at once from Theorem 3 that G_{2} is the domain of attraction of this state.

The only trajectories of system (11) for which the conditions of Theorem 2 do not all
hold are saddle-point equilibrium states and the separatrices that approach them as $t \rightarrow-\infty$. (The condition that fails to hold here is $x(t) \in G$, where G does not contain equilibrium states). In the final analysis, therefore, the above-mentioned trajectories will be the boundaries of the domains of attraction of the stable equilibrium states and limit cycles of the second kind.

This result is well-known /3/ and can be derived by other, different methods. It is worth noting here that the use of Theorem 2 and 3 involves a minimum of calculations.

Example 2. Let us investigate the global asymptotic stability of the Lorenz system /8, 9/

$$
\begin{gather*}
x=-d(x-y), y \cdots x-y-x z, z--b z+x y \tag{12}\\
d>0, r>1, b>0
\end{gather*}
$$

We recall that system (1) is said to be globally asymptatically stable if any of its solutions tends, as $t \rightarrow+\infty$, to some equilibrium state $/ 7 /$.

If $r>1$ system (12) has three equilibrium states. We can therefore combine the application of Theorem 3 with fairly well-developed estimates for attractors of system (12) /9-11/, Lhanks to which, for certain parameter values, one can state that an attractor of system (12) is contained in a set $G_{1} \cup G_{2} \cup\{0\}$, where G_{1} and G_{2} are disjoint bounded regions each of whose closures contains exactly one equilibrium state.

Here we shall need the following simple assertion.
Lemma. If $l \geqslant 2$, an attractor of system (12) is contained in the set

$$
\begin{gather*}
\left\{z \geqslant 0, y^{2}+\left(z--r^{2}<B r^{2}, y^{2} \leqslant B r^{2}-1, x^{2} \leqslant B r^{2}-1\right\}\right. \tag{13}\\
B=b^{2} / 4(b-1)
\end{gather*}
$$

if $b \leqslant 2$, an attractor of system (12) is contained in the set

$$
\begin{equation*}
\left\{z \geqslant 0, y^{2}+\{z-r)^{2}<r^{2}, y^{2} \leqslant r^{2}-1, x^{3} \leqslant r^{2}-1\right\} \tag{14}
\end{equation*}
$$

The proof follows the same lines as the proof of the analogous result in $/ 12 /$. When $b<2$ we have

$$
\left[y(t)^{2}+(z(t)-r)^{2}-r^{2}\right] \leq-b\left[y(t)^{2}+(z(t)-r)^{2}-r^{2}\right]
$$

Hence

$$
\begin{equation*}
\overline{\operatorname{mim}}_{t \rightarrow+\infty}\left[u(t)^{2}+(f()-r)^{2}\right\} \leqslant r^{2} \tag{15}
\end{equation*}
$$

The relation $\lim _{t \rightarrow+\infty} z(i) \geqslant 0$ was proved in $/ 10 /$.
The fact that the sets $\left\{y^{2}+(z-r)^{2} \leqslant r^{2},|x|=c\right\}$ are contact-free for $c>r$ and the estimate
(12) imply that $\overline{\lim }_{t \rightarrow+\infty}|x(t)| \leqslant r$.

Let $\prod_{t \rightarrow+\infty}|x(t)| \leqslant x_{k}$. Then it follows from this inequality, the second equation of system (12) and (15), that

$$
\begin{equation*}
\prod_{t \rightarrow+\infty} \eta(t)^{2} \leqslant x_{h}^{2} r^{2}\left(1+x_{h}^{2}\right)^{-1} \tag{16}
\end{equation*}
$$

The fact that the sets $\left\{y^{2}+(z-r)^{2} \leqslant r^{2}, y^{2} \leqslant x_{k}{ }^{2} r^{2}\left(1-x_{k}{ }^{2}\right)^{-1},|x|=c\right\}$ are contact-free for $c^{2} \geqslant$ $x_{k}{ }^{2} r^{2}\left(1+x_{k}^{2}\right)^{-1}$ and the estimates (15) and (16) imply the inequality

$$
\overline{\operatorname{Tim}}_{i \rightarrow \alpha^{x}}(t)^{2} \leqslant x_{k}^{2} r^{2}\left(1+x_{k}^{2}\right)^{-1}
$$

Putting $x_{k+1}^{2}=x_{k}^{2} r^{2} /\left(1+x_{k}^{2}\right), x_{0}=r$ and letting $k \rightarrow \infty$ in this equality, we obtain $\lim _{k \rightarrow \infty} x_{k}^{2}=$ $r^{2}-1$.

This last relation proves the assertion of the lemma when $b \leqslant ?$. When $b>2$ the proof proceeds along similar lines.

We now present one of the simplest sufficient conditions for an attractor of system (12) to lie in the set $G_{1} \cup G_{2} \cup\{0\} / 11 /$:

$$
\mu=\frac{d+1}{\sqrt{\bar{d}(r-1)}}, \quad \gamma=\frac{2 d}{b}, \quad \mu_{0}^{2} / 4 \geqslant \gamma \sigma_{0}^{2}-\frac{1}{C r^{2}-1} \frac{2 d(r-1)}{}, \quad C=\left\{\begin{array}{l}
B \text { if } b \geqslant 2 \tag{17}\\
1 \text { if } b \leqslant 2
\end{array}\right.
$$

If $b=8 / 3, d==10$, condition (17) holds for $r \geqslant 4$.
Since $\lambda_{1}+\lambda_{2}+\lambda_{3}=-(d+b+1)$, a sufficient condition for the assumptions of Theorem 3 to be valid is that $\lambda_{3}>\cdots(d \div b+1)$ on the sets (13) and (14). Applying Sylvester's criterion to the matrix

$$
\frac{1}{2}\left(\frac{\partial f}{\partial x}: \frac{\partial f^{*}}{\partial x}\right)-\lambda_{3} I
$$

we see that the last inequality will hold provided that

$$
\left[(b+1)(b+d)-(d+r-z)^{2} / 4\right](d+1)-(d+b) y^{2}, 4>0
$$

on the sets (13) and (14). This inequality will hold if $b \geqslant 1$,

$$
\begin{equation*}
(b+1)(b+d)>\frac{C_{r^{2}}(d+b)}{4(d+1)} \div \frac{d^{2}}{4}+\frac{d r}{2} \tag{18}
\end{equation*}
$$

Thus, if conditions (17) and (18) are satisfied, then by Theorem $3 G_{1}$ and G_{2} are domains of attraction of stable equilibrium states and, consequently, system (12) will be globally asymptotically stable. Note that for $b=8 / 3$ and $d=10$, inequality (18) will hold for any $\quad r \leqslant 3.5$. Thus, estimates (17), (18) are somewhat superior to Smith's estimate /13/ in some cases. We also point out that further improvement of the global asymptotic stability conditions obtained here can be achieved by applying the apparatus developed in /14, 15/ for estimating attractors of system (12).

REFERENCES

1. DEMIDOVICH B.P., Lectures on the Mathematical Theory of Stability, Nauka, Moscow, 1967.
2. HARTMAN PH., Ordinary Differential Equations, Wiley, New York, 1964.
3. BARBASHIN E.A. and TABUYEVA V.A., Dynamic Systems with Cylindrical Phase Space. Nauka, Moscow, 1969.
4. YANKO-TRINITSKII A.A., A New Method for Analysing the Operation of Synchronous Motors under Sharply Varying Loads, Gosenergoizdat, Moscow-Leningrad, 1958.
5. SHAKHGIL'DYAN V.V. and LYAKHOVKIN A.A., Automatic Phase-Locked Frequency Control Systems, Svyaz, Moscow, 1972.
6. LIKHAREV K.K., Introduction to the Dynamics of Josephson Junctions, Nauka, Moscow, 1985.
7. GELIG A.KH., LEONOV G.A. and YAKUBOVICH V.A., Stability of Non-linear Systems with Nonunique Equilibrium States, Nauka, Moscow, 1978.
8. Strange Attractors /Collection of papers/. Mir, Moscow, 1981.
9. LEONOV G.A. and REITMANN V., Attraktoreingrenzung für nichtlineare Systeme. Teubner-Verlag, Leipzig, 1987.
10. LEONOV G.A., On a method of construting positively invariant sets for the Lorenz system. Prikl. Mat. Mekh., 49, 5, 1985.
11. LEONOV G.A., On the dissipativity and global stability of the Lorenz system. Differents Urav., 22, 9, 1986.
12. LEONOV G.A., On the global stability of the Lorenz system. Prikl. Mat. Mekh., 47, 5, 1983.
13. SMITH R.A., Some applications of Hausdorff dimension inequalities for ordinary differential equations. Proc. Roy. Soc. Edinburgh, Ser. A, 104, 3-4, 1986.
14. LEONOV G.A., On estimates of attractors of the Lorenz system. Vestnik Leningrad. Gos. Univ., Ser. 1, 1, 1988.
15. LEONOV G.A., BUNIN A.U. and KOKSCH N., Attraktorlokalisierung des Lorenz-Systems. Z. angew. Math. Mech., 67, 12, 1987.
